

CITY OF ELK GROVE

CLIMATE COMPASS: A PLAN FOR IMPLEMENTING ELK GROVE'S CLIMATE, SUSTAINABILITY, AND RESILIENCE GOALS

COMMUNITY WORKSHOP #1
NOVEMBER 15, 2023

Agenda

- Welcome and Introductions
- Climate Compass Overview
- Greenhouse Gas Inventory
- Key Climate Hazards
- Community Strengths and Weaknesses Activity
- Questions and Next Steps

Introduction

In the chat, please share:

Name, zip code of residence, affiliation, and favorite place in Elk Grove

Team Organization and Roles

City of Elk Grove

- Carrie Whitlock, AICP, Strategic Planning & Innovation Program Manager
- Christal Love-Lazard, Community Engagement & Government Relations Manager
- Kaylah Ball, CivicSpark Fellow

Ascent

- Hannah Kornfeld, AICP, Project Manager
- Luis Montes, Assistant Project Manager
- John Steponick, Climate Adaptation Analyst
- Natalie Kataoka, Climate Action Intern

Climate Compass Overview

A Plan for Implementing Elk Grove's Climate, Sustainability, and Resilience Goals

Key Terms

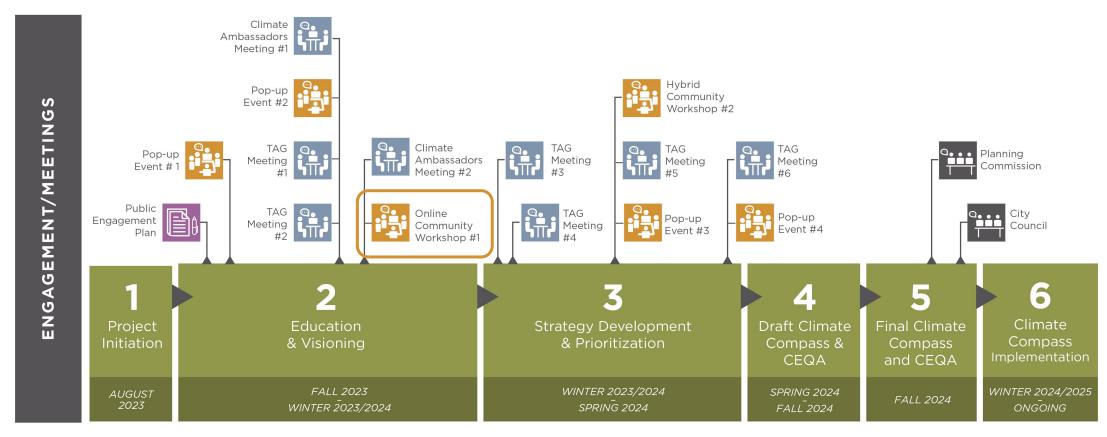
- Greenhouse Gas Gases that trap heat in the atmosphere
- <u>Climate Change</u> Long-term shifts in temperature and weather patterns **driven by greenhouse gas emissions** which are primarily produced from burning fossil fuels
- <u>Sustainability</u> Meeting the needs of the present **without compromising** the ability of future generations to meet their own needs
- **Resilience** The capacity of individuals, communities, institutions, businesses, and systems to **survive**, **adapt**, **and thrive** in the face of chronic stresses and acute shocks.
- <u>Climate Adaptation</u> Seeks to address the **impacts of climate change** on communities
- <u>Mitigation</u> Reduce communities' generation of greenhouse gas emissions and **minimize** contributions to climate change

What is the Climate Compass?

- A roadmap for reducing GHG emissions and mitigating climate change
- Identifies existing and projected GHG emissions
- Sets GHG reduction targets
- Establishes policies and actions to meet reduction targets
- Integrates **climate adaptation** and resilience strategies
- Meaningfully engages community
- Provides an implementation program

Climate Mitigation vs. Adaptation

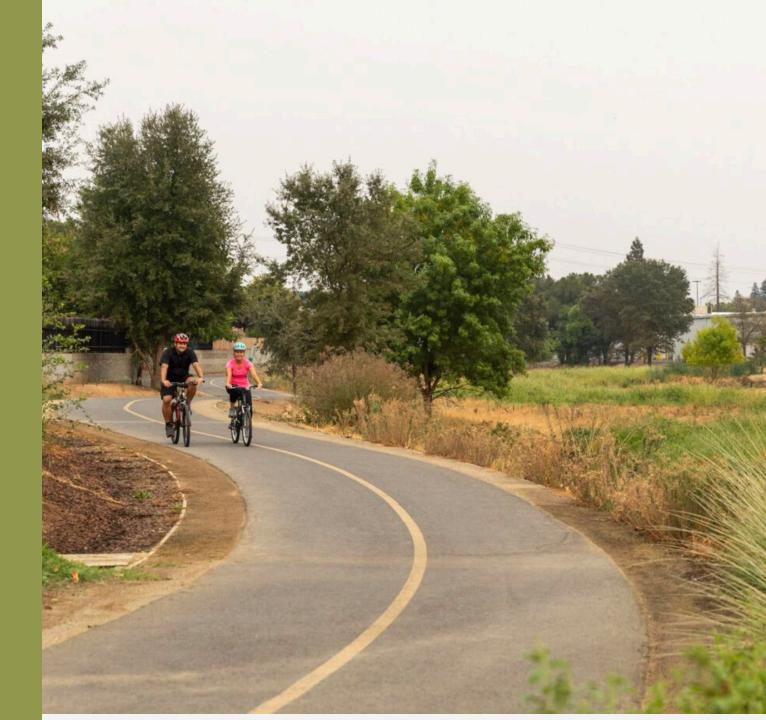
Climate change mitigation seeks to reduce the flow of GHGs into the atmosphere through reducing GHG emissions and expanding carbon sinks.


Communities emit GHGs into the atmosphere. These heat-trapping gases cause global temperatures to rise. Rising global temperatures impact local climates (e.g., temperature and precipitation) and influence sea-level rise, which may impact communities

Climate change adaptation seeks to address the impacts of climate change on communities.

Project Timeline

City of Elk Grove | Climate Compass

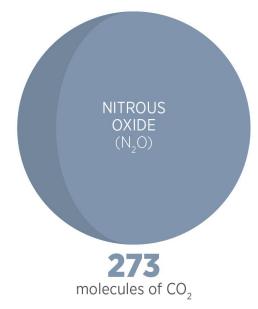


Climate Compass: Elk Grove's Climate Action Plan Update

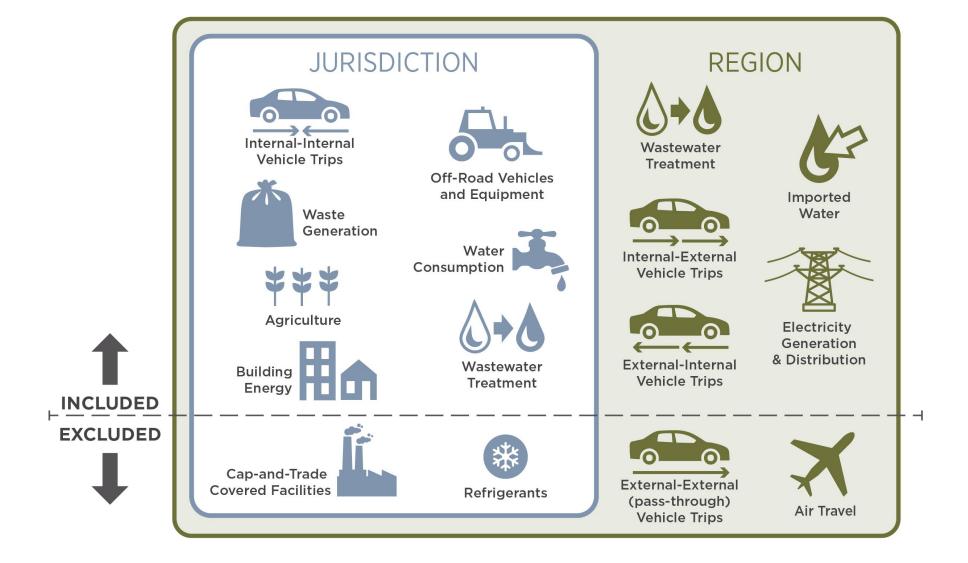
TAG: Technical Advisory Group

GHG Inventory Overview

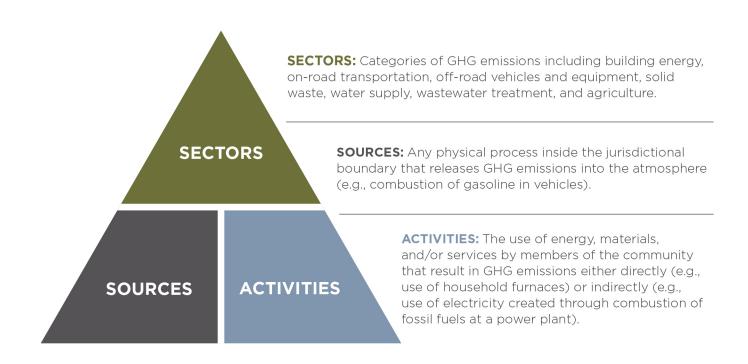
Identifies **existing**GHG emissions



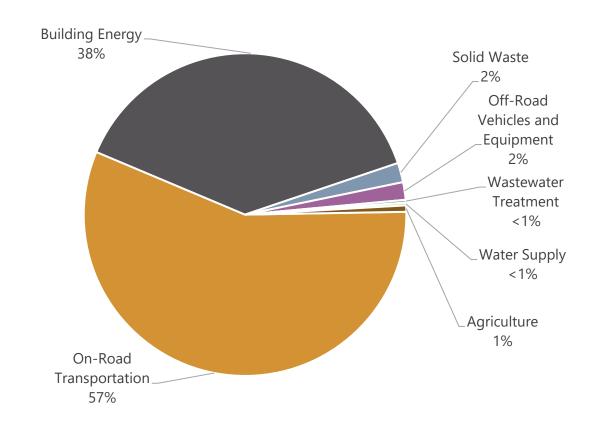
Defining Greenhouse Gases


- Atmospheric gases:
 - carbon dioxide (CO₂)
 - methane (CH₄)
 - nitrous oxide (N₂O)

Global Warming Potentials - Equivalent Strengths of GHGs



GHG Emissions Inventory Boundary


Greenhouse Gas Emissions Sectors

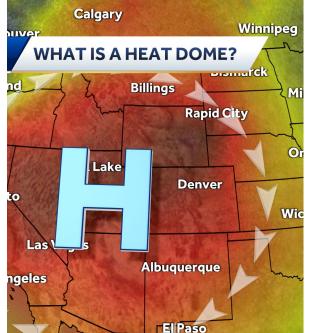
- Sectors/Sources
 - On-road transportation
 - Building Energy
 - Solid Waste
 - Off-Road Vehicles and Equipment
 - Wastewater Treatment
 - Water Supply
 - Agriculture

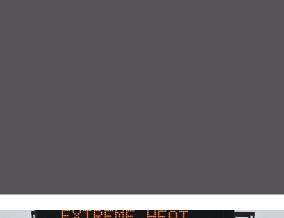
2021 Communitywide Inventory

Sector	2021 GHG Emissions (MTCO ₂ e)
On-Road Transportation	586,220
Building Energy	398,365
Solid Waste	20,222
Off-Road Vehicles/Equipment	18,284
Wastewater Treatment	2,928
Water Supply	2,802
Agriculture	6,544
Total	1,035,364

Key Climate Hazards

Climate-related events or trends that pose risks to its environment





Climate Hazards

- Extreme Heat
- Flooding
- Drought
- Wildfire/Smoke Impacts

Extreme Heat

Table ES-1: Changes in Annual Extreme Heat Days and Heat Wave Events (Historic to 2099) - High-Emissions Scenario

EXTREME HEAT	EXTREME HEAT DAYS AND HEAT WAVE EVENTS					
INDICATOR	HISTORIC (1961- 1990)	NEAR TERM (2020–2050)	MIDTERM (2040–2070)	LONG TERM (2070–2099)		
Number of annual extreme heat days (daily max temp of 103.1°F)	4 DAYS		24 DAYS	40 DAYS		
Annual heat wave event frequency (4+ consecutive days above 103.1°F)	0.2 HEAT WAVE EVENTS	1.6 HEAT WAVE EVENTS	SSS SSS 3.1 HEAT WAVE EVENTS	5.8 S		
Average heat wave duration (days)	DAYS	5.3 DAYS	7 DAYS	11.1 DAYS		

Flooding

Table ES-2: Storm Event Changes in Elk Grove Watersheds through 2099 under a High-Emissions Scenario


	CHANGE IN 24	CHANGE IN 24-HOUR RAINFALL PERIOD (INCHES) FOR 2-, 10-, AND 100-YEAR STORM EVENTS					
WATERSHEDS	MIDCENTURY (2035–2064)			LATE CENTURY (2070–2099)			
	2-YEAR	10-YEAR	100-YEAR	2-YEAR	10-YEAR	100-YEAR	
Morrison Creek	+6%	-5%	-16%	+20%	+22%	+26%	
Snodgrass Slough	-2%	+3%	-9%	+28%	+27%	+26%	
Upper Cosumnes River	-2%	+6%	+23%	+8%	+17%	+40%	
Deer Creek	-3%	-3%	-1%	+11%	+12%	+15%	

Group Activity

Identifying Elk Grove's vulnerabilities and strengths

Overview of Discussion Topic

- Collaboratively identify and discuss Elk Grove's infrastructure, societal, and environmental vulnerabilities and strengths
- Examples
 - Infrastructural buildings, houses, bridges, utilities
 - Societal healthcare, food, emergency response
 - Environmental pollution, recreation, tree cover

Ground Rules for Discussion

- Be here now.
- One speaker at a time.
- "Step up" to voice your thoughts
- "Step back" to let others speak
- Be additive, not repetitive
- Listen actively (seek to understand, keep an open mind)
- Help the facilitator to keep things on-time

Next Steps

